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Abstract. The extraction of spines from medical records in a fast yet
accurate way is a challenging task, especially for large data sets. Ad-
dressing this issue, we present a framework based on convolutional neural
networks for the reconstruction of the spinal shape and curvature, mak-
ing statistical assessments feasible on epidemiological scale. Our method
uses a two-step strategy. First, anchor vertebrae and the spinal centerline
in between them get extracted. Second, the centerlines are transformed
into a common coordinate system to enable comparisons and statistical
assessments across subjects. Our networks were trained on 103 subjects,
where we achieved accuracies of 3.3 mm on average, taking at most 1 s
per record, which eases the handling of even very large cohorts. Without
any further training, we validated our model on study data of about 3400
subjects with only 10 cases of failure, which demonstrates the robustness
of our method with respect to the natural variability in spinal shape and
curvature. A thorough statistical analysis of the results underpins the
importance of our work. Specifically, we show that the spinal curvature
is significantly influenced by the body mass index of a subject. Moreover,
we show that the same findings arise when Cobb angles are considered
instead of direct curvature measures. To this end, we propose a gener-
alization of classical Cobb angles that can be evaluated algorithmically
and can also serve as a useful (visual) tool for physicians in everyday
clinical practice.

1 Introduction

Recently, medical images have become an integral part of public health studies
to get a broader insight into the data [12, 13]. However, they are not suitable for
direct analyses as the important information is not obtainable directly. For this
reason, frameworks need to be established that extract information suitable for
epidemiological purposes. Furthermore, non-experts in image processing should
be able to apply the methodology. Our goal is to provide such a framework for
quantification of spinal curvatures on large scale data sets. Following the idea
behind visual analytics [8], the framework shall be suitable for the exploration
of data sets with respect to certain factors to derive hypotheses on potential
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relations and to later validate these using statistical tests. We will show that our
framework is well-suited to implement this workflow (exploration → hypothe-
sis → testing). To this end, we will investigate the relation between the body
mass index (BMI) and spinal curvature. Due to the heterogeneity that can be
expected from public health studies, our framework is based on convolutional
neural networks (CNNs), which achieve state-of-the-art results for many medical
image processing tasks [5] with large natural variability between subjects.

Related Work Many attempts have been made in the scope of spine analysis.
Han et al. [2] use a Recurrent GAN for simultaneous semantic segmentation of
spinal structures and classification of spinal diseases for 2D MR images. Hille
et al. [3] present a hybrid level-set-based approach for robust and precise seg-
mentation of vertebral bodies in 3D clinical routine MRI with minimal user
interaction. Korez et al. [4] couple deformable models with CNNs for supervised
segmentation of vertebral bodies from 3D MR spine images. Castro-Mateos et al.
[1] introduce Statistical Interspace Models as an extension to Statistical Shape
Models that take relative positions and orientations among objects into account
and apply them to spine segmentation of CT images. Rak et al. [9] apply a com-
bination of CNNs and graph cuts with star-convexity constraints to 3D patches
of MR vertebra images to segment the whole spine. For further works please see
the survey of Rak and Tönnies [10].

2 Method

Pretest Data Set For the development of our framework, a pretest data set
of the Study of Health in Pomerania (SHIP) [13] was used. It includes T1-
weighted whole spine MR images of 103 subjects that were acquired sagitally
on a 1.5 T Siemens scanner with a field-of-view (FOV) of 50×50 cm and a voxel
spacing of 1.1×1.1×4.4 mm. We processed the images as follows: z-score normal-
ization was applied to better generalize and the in-plane resolution was halved to
2.2×2.2×4.4 mm to speed up training. Ground truth annotations for each sub-
ject were created by the authors. Specifically, the centers of all vertebrae from
the topmost cervical vertebra (C1) to the first sacral vertebra (S1) were defined
for each subject, whereby an isotropically resliced volume with a resolution of
1.1×1.1×1.1 mm was used during creation to maximize ground truth precision.

Outline The first step of our method extracts a centerline probability map
(CPM) of the spine using a V-Net-like CNN (Fig. 1) [7]. It is not favorable to
directly extract the individual vertebrae via regression since their number may
vary between subjects, which is difficult to reflect at the output of a neural
network. As an example, this natural variability occurs in 5 % of the Chinese
population [14] and thus cannot be neglected in the context of public health
studies. In parallel, a second CNN (Fig. 1 but with 2 output channels) extracts
the positions of the anchor vertebrae (AVs), which in our case are C1 and S1.
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Fig. 1. Architecture of our CNN for extracting the centerline probability map. Blue
boxes depict multi-channel feature maps. A white box corresponds to a copied feature
map. The number above each box denotes the number of channels.

(a) (b) (c)

Fig. 2. (a) Predictions of our CNNs. Anchor vertebra CNN (red channel). Extracted
anchor vertebra locations (crosses). Centerline probability map CNN (green channel).
(b-c) Zoomed patches centered around the upper and lower vertebra, respectively.

These AVs can be found reliably due to their specific appearance and shape,
which will be shown in the experiments. Given the trained CNNs, the centerline
is extracted by following the CPM in between the found AVs. Afterwards, the
reconstructed centerline is transformed into a reference system. This high-level
spine representation enables simple visual as well as statistical comparability, as
will be shown later on.

Anchor Vertebra Localization For localization of the AVs, the CNN is
trained to predict one probability map for each AV from the whole spine MRI. To
create these maps, a white voxel is inserted into a zero-volume at the position of
the respective AV and a Gaussian filter (σ = 6 mm) is applied to yield a smooth
blob around the AV location. The size of the kernel was chosen to roughly re-
flect the size of an average vertebra. After prediction, the AV center locations
can be extracted easily by searching for the global maximum per channel (Fig.
2, red channel, crosses). Preliminary tests showed that this fuzzy segmentation
task results in more accurate and robust localizations compared to a coordinate
regression task, which would have been the intuitive strategy.

Centerline Calculation To create the CPM, we fit a cubic spline through the
ground truth vertebra locations and rasterize the resulting curve into a volume
that is initially filled with zeros. Afterwards, a Gaussian filter (σ = 6 mm) is
applied to create a smooth ridge along the spine, which is then to be predicted
via a dedicated CNN (Fig. 2 green channel). As for AV localization, this fuzzy
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Fig. 3. Sagittal (left) and coronal projections (right) of the normalized centerlines of
the about 3400 subjects of the SHIP study. The visualization encodes the distribution
of shapes in boxplot-manner using different gray values. From white to black: median
centerline, centerline range from 1st to 3rd quartile, centerline ranges for the 5th and
95th percentile. Dashed yellow lines separate the cervical, thoracic and lumbar area.

segmentation task yields more accurate and robust predictions compared to di-
rect coordinate regression. After prediction, the actual centerline is defined by
locations of maximal probability for each axial slice between the AVs. A shortest
path algorithm is reasonable, too, and also more robust in case of ambiguous
CPM predictions, which was not the case for any of our data.

Centerline Normalization For further analyses, the extracted centerlines are
transformed into a common reference system by applying a similarity transfor-
mation, i.e. translation, rotation and isotropic scaling, to each centerline. The
transformation maps the extracted AV locations onto fixed targets in the com-
mon reference system (Fig. 3), which can be implemented easily using Rodrigues’
rotation formula, yielding an angle- and ratio-preserving mapping by construc-
tion, which is suitable for later statistical analysis.

Cobb Angle Transformation To compare our framework with earlier work,
we utilize Cobb angles, which are typically measured between inflection points.
Based on preliminary tests, we found that the localization of these points and
the subsequent angle measurement is error-prone when directly applied inside
a neural network. For this reason, we generalized the idea of Zukić et al. [15]:
For each pair of positions along the centerline, the signed angle between the
direction vectors along the centerline is calculated (Fig. 4 (a)). We arrange the
so-obtained values into a matrix representation (Fig. 4 (b)), the so-called Cobb
angle transformation (CAT). It contains the (signed) Cobb angles between any
pair of points along the spine and can be seen as a generalization of classic Cobb
angles which are calculated between inflection points only. Using the CAT, we
can also reconstruct classic Cobb angles by finding the maximum (unsigned)
angle in the matrix representation.

Data Augmentation To cope with the rather small number of training samples
available, a data augmentation without interpolation was applied in each epoch,
consisting of random flips along the sagittal or transverse axis as well as random
pixel-wise translations along the coronal or transverse axis. To constrain the
translation during augmentation, we require that all vertebra locations remain
inside the input domain even after augmentation.
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Fig. 4. (a) Normalized direction vectors d1 and d2 along the normalized centerline
at positions h1 and h2. (b) Cobb angle transformation contains α = ∠(d1, d2) and
β = ∠(d2, d1) at positions (h1, h2) and (h2, h1) where ∠(x, y) defines the signed angle
between x and y. (c-d) Example for (a-b) using ∠(a, b) = sgn(ax) · arccos(〈a, b〉) de-
picting the part of the vertebral column with largest Cobb angle with respect to the
sagittal plane. Cobb angles in the coronal plane are defined analogously.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Predictions on unseen data from the main SHIP study. Almost all results were
classified as correct (a-d); few cases suffered from, for example, a weak prediction of
the lower anchor vertebra (e), disappearing vertebrae due to acquisition artifacts (f)
or bad illumination in the thoracic area (g).

Pretest Data Results After training both CNNs using stochastic gradient
descent (learning rate = 0.01, Nesterov momentum = 0.7) [11] on the fuzzy
Dice loss [7] for 600 epochs (AV CNN) and 200 epochs (CPM CNN) on the
training data (82 of 103 samples), our method achieves a mean absolute error
of 2.7 mm with respect to the ground truth on the validation data (21 of 103
samples), which is already well below the inter-slice spacing for our data and
thus sufficient for our needs.

3 Experiments

Study Data Sets After training both networks on the pretest data, the main
SHIP data is evaluated without any further training. It consists of about 3400
records which also include interviews on the health status and laboratory data.
The main SHIP data is stratified based on geographical regions, subject age and
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Fig. 6. (a) Histogram of lengths of normalized centerlines in the sagittal plane (100 %
being a perfectly straight spine). (b) p-values of Mann-Whitney U tests on BMI thresh-
olds, comparing the normalized centerline lengths above and below each BMI threshold
for statistical differences; significance level α = 0.05 (gray, dashed).

sex, which leads to near-uniform distributions across these attributes. Regarding
subject weights, the distribution is nearly Gaussian.

Study Data Results Since the main SHIP data set does not include any
ground truth, we assessed the result quality (Fig. 5) by visual inspection. To this
end, the computed centerlines were used to create sagittal and coronal curved
planar reformations yielding only two slices per subject with centerline overlay.
A result was classified as success if the centerline stayed inside the vertebral
column and its appearance seemed natural (e.g. no visual discontinuities). Only
10 of the about 3400 records (0.3 %) could not be classified as success, which
underpins the robustness of our method on unseen data and renders it applicable
for large data sets. These failure cases are related to artifacts (Fig. 5 (e)) or bad
illumination (Fig. 5 (f)).

Exploration and Hypotheses To verify the suitability of our method for
epidemiological analysis workflows, we used our centerline normalization to de-
rive reasonable hypotheses about the data. Having a look at the distribution of
spines with respect to attributes like subject size and weight, we came up with
the hypothesis that subjects with a predisposition to obesity tend to have more
bent spines than non-obese subjects. To verify this exemplary hypothesis, we set
up according statistical tests, the results of which will now be discussed.

Statistical Testing In our first experiment, we compare different body mass
index (BMI) levels by spine curvature directly, exploiting our centerline nor-
malization approach. In the common coordinate system, the centerline length
directly corresponds to curvature. For statistical evaluation, the Mann-Whitney
U (MWU) test [6] was used which tests whether one random variable is sta-
tistically larger than the other one. Specifically, we test whether subjects with
smaller BMIs have straighter spines. To this end, we split the set of subjects
at each BMI level and perform MWU tests for each split. In Fig. 6 (right),
the resulting p-values are depicted graphically. We observe significant results
(α = 0.05) for 34 ≤ BMI ≤ 38. Looking at the actual centerline lengths, we ob-
serve that subjects of obesity class 1 or lower have significantly straighter spines
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Fig. 7. (a) Histogram of maximum of the Cobb angle transformation in degrees. (b) p-
values of Mann-Whitney U test on BMI thresholds, comparing the Cobb angles above
and below each BMI threshold for statistical differences in the cervical (blue), thoracic
(red) and lumbar (yellow) area; significance level α = 0.05 (gray, dashed).

(∅ 102.5 % length) than those of obesity class 2 or higher (∅ 103.2 % length).
This finding looks intuitive at first glance, but due to the lack of large scale
assessments, we have not found any consolidation in literature. This underpins
the need for frameworks like ours. We set up another experiment based on the
CAT for further underpinning. Here, the Cobb angles were evaluated for the
cervical, thoracic and lumbar area, using the very same procedure as described
above. From the results (Fig. 7), we observe significant differences when splitting
subjects at BMI levels {25 − 42}, {25 − 33}, {21 − 42} for the three respective
sections (Fig. 7 (b)). Comparing the estimated Cobb angles after the subjects
split, the cervical (less obese: 27◦ vs. more obese: 23◦) and the thoracic area (less
obese: 43◦ vs. more obese: 41◦) are bent less and the lumbar area is bent more
(less obese: 33◦ vs. more obese: 35◦) for subjects with higher obesity levels.

4 Conclusion

Our goal was to enable analysis of large image data sets in the context of epidemi-
ological public health studies. Specifically, we provide a CNN-based framework
to extract the whole spinal centerline from MR images in a fast yet accurate way.
To ease the comparison of the extracted centerlines, we introduced a normaliza-
tion step, which maps all centerlines into a common reference system. The latter
can be used to derive hypotheses about the data, which are then tested statisti-
cally. Furthermore, we generalized standard Cobb angles into the so-called Cobb
angle transformation, which proves a useful tool for detecting, classifying and
quantifying spinal malformation at a glance in clinical daily routine. To under-
pin the importance of frameworks like ours, we derived hypotheses about the
spine curvature on an epidemiological data set of about 3400 subjects. Using
statistical tests, we found that the body mass index has a significant influence
on the spinal curvature, i.e. subjects with at most obesity class 1 have straighter
spines than more obese subjects. We also found that the spine in the cervical
and thoracic section is bent less the higher the body mass index gets. Further
tests, which were beyond the scope of this work, showed that even normal sub-
jects have small but significant scoliotic tendencies (Cobb angles of −7◦ to 9◦)
and spines of females are bent more than those of males. Of course, with more
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attributes becoming available in the course of a public health study, more inter-
esting questions will arise. For example, whether the curvature of the spine is
influenced by diseases not related to the spine or by certain human habits.
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4. Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Model-based segmentation of vertebral
bodies from mr images with 3d cnns. In: MICCAI (2016)

5. Litjens, G.J.S., Kooi, T., Bejnordi, B.E., et al.: A survey on deep learning in medical
image analysis. Med Imag Anal (2017)

6. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Annals Math Statis (1947)

7. Milletari, F., Navab, N., Ahmadi, S.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. Int Conf 3D Vision (2016)

8. Pak, C.W., Thomas, J.: Visual Analytics. IEEE Compt Graph Appl (2004)
9. Rak, M., Steffen, J., Meyer, A., et al.: Combining convolutional neural networks

and star convex cuts for fast whole spine vertebra segmentation in mri. Compt
Methods Prog Biomed (2019)
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